Labels

_fuxi (75) _IV (146) _misc (5) {610610 (30) algo (1) automatedTrading (8) banking/economy (3) book (14) c++misc (125) c++real (15) c++STL/java_container (7) cppTemplate (1) db (13) DB_tuning (4) deepUnder (1) dotnet (69) eTip (17) excelVBA (12) finance+sys (34) financeMisc (24) financeRisk (2) financeTechMisc (4) financeVol (21) finmath (17) fixedIncome (25) forex (16) IDE (24) invest (1) java (43) latency (4) LinearAlgebra (3) math (30) matlab (24) memoryMgmt (11) metaPrograming (2) MOM (15) msfm (1) murex (4) nofx (11) nosql (3) OO_Design (1) original_content (4) scriptUnixAutosys (19) SOA (7) socket/stream (15) sticky (1) subquery+join (2) swing (32) sybase (6) tech_orphan (12) tech+fin_career (30) telco (11) thread (21) timeSaver (13) tune (10) US_imm (2) US_misc (2) windoz (20) z_algo+dataStructure (4) z_arch (2) z_c#GUI (30) z_career (10) z_career]US^Asia (2) z_careerBig20 (1) z_careerFinanceTech (11) z_FIX (6) z_forex (31) z_hib (2) z_ikm (7) z_inMemDB (3) z_j2ee (10) z_oq (14) z_php (1) z_py (26) z_quant (4) z_skillist (3) z_spr (5)

Wednesday, December 11, 2013

derivative contract to swap 2 assets

nice brain teaser. No math required. Just common sense.

Suppose asset S and X have GBM dynamics (with mu_s, mu_x, sigma_s, sigma_x etc )
Suppose asset S and X have GBM dynamic too.

There's a contract C paying (ST - XT) on termination. Could be a call option or any other contract.
There's a contract C paying (ST - XT) on termination.

Q: Given X vs X have the same price today (and ditto S vs S), what can we say about C vs C price today?

To be concrete, say X0 = X0 = $0.5 and S0 = S0 = $3.

A replication portfolio for contract C -- long 1 unit of S and short 1 unit of X. This portfolio has current price S0 - X0 = $2.5. Similar replication portfolio for C has current price $2.5. Tomorrow, the replication portfolios may have different prices. On expiration, they may be different in value, though each portfolio is a perfect replication.

So the GBM dynamic is irrelevant !