Labels

_fuxi (75) _IV (146) _misc (5) {610610 (30) algo (1) automatedTrading (8) banking/economy (3) book (14) c++misc (125) c++real (15) c++STL/java_container (7) cppTemplate (1) db (13) DB_tuning (4) deepUnder (1) dotnet (69) eTip (17) excelVBA (12) finance+sys (34) financeMisc (24) financeRisk (2) financeTechMisc (4) financeVol (21) finmath (17) fixedIncome (25) forex (16) IDE (24) invest (1) java (43) latency (4) LinearAlgebra (3) math (30) matlab (24) memoryMgmt (11) metaPrograming (2) MOM (15) msfm (1) murex (4) nofx (11) nosql (3) OO_Design (1) original_content (4) scriptUnixAutosys (19) SOA (7) socket/stream (15) sticky (1) subquery+join (2) swing (32) sybase (6) tech_orphan (12) tech+fin_career (30) telco (11) thread (21) timeSaver (13) tune (10) US_imm (2) US_misc (2) windoz (20) z_algo+dataStructure (4) z_arch (2) z_c#GUI (30) z_career (10) z_career]US^Asia (2) z_careerBig20 (1) z_careerFinanceTech (11) z_FIX (6) z_forex (31) z_hib (2) z_ikm (7) z_inMemDB (3) z_j2ee (10) z_oq (14) z_php (1) z_py (26) z_quant (4) z_skillist (3) z_spr (5)

Tuesday, May 29, 2012

describing (with clarity) the complexity of vol fitter

Highlight complexity only after you achieve clarity.

* First focus on a simple smile curve with 3 points. Assume exchange sends you implied vol (no need to explain what IV is)
* Then 2 smile curves forming a 3D surface.

* explain curve fitting on one smile curve -- many technical people can understand it
** fitting is important because raw data could be inconsistent and invalid.
** explain fitting cost
* talk about term structure of vol
* talk about term structure of curve parameters
* mention dynamic nature of the surface -- previous surface as a first guess
* describe extrapolation -- important for many structured deals
* mention skew parameter on the parametric form
* mention smoothness
* mention surface models -- cubic, orthogonal
* describe inversion outliers -- to be removed during inversion, before fitting.